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Xenon Formal Security Policy Model

J. McDermott, J. Kirby, M. Kang, and B. Montrose
Naval Research Laboratory

14 June 2007

Abstract

Xenon is a high-assurance virtual machine monitor baseti®Xén open-source
hypervisor. We model the Xenon high-assurance virtual nim&chonitor’s security
policy as a conditional non-interference policy, using aerg-based paradigm and
the CSP formalism. Our single model formally describes ndy ¢he separation of
information flow but also the sharing. We also present oatstyy for showing corre-
spondence between this model and the Xenon interface.

1 Introduction

This report defines the formal security policy model for the Xenon higgueance vir-
tual machine monitor (VMM) version of the Xen hypervisor [1, 2]. Higls@asnce vir-
tual machine monitors are used to provide highly robust information flow chnémper-
resistance, and self-protection for communities of users, based oedsimerests or re-
sponsibilities of those communities. The distinction that protection is not beingdeid
for individual applications, network protocols, or users. Insteadt poocessing for all ap-
plications, network protocols, and users hosted by an execution emarmtris separated
on the basis of information flow control between user communities. For exasypgpose
a large business forms a new partnership with another business that éspdgential com-
petitor. The partnership involves joint research and development oWapneduct line.
That partnership constitutes an interest group or community for the emgloya&ing on
the partnership. The community of interest working on this new product keelsia highly
robust shared execution environment that controls information flovtePtiog and separat-
ing network communication for this community is necessary but not sufficiene sveak
execution environments at the end points of communication can be compromised.
Information flow control in execution environments is a difficult problem. dmtcast
to communication networks, execution environments provide processinglbasistorage
and communications. Because of this, they have a much richer set of lpagsévations.
Interactions among this richer set of operations can cause many differems of unin-
tentional information flow, as a side-effect of intentional or authorizext@ssing. Strong
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information flow control must address all of these possible forms of infaandlow. Vir-
tual machine monitors finesse the problem by partitioning these large setssibledlows
into relatively small numbers of virtual execution environments, based enaggnmuni-
ties. Some virtual machine monitor implementations are candidates for strongatfon
flow security because their implementations are small and do not evolve rgpjidly

The Xenon formal security policy model serves as: 1) a key element indleyp
to-code modeling chain, and 2) evidence for a Common Criteria securityagicaiu A
formal security policy model is needed to meet the Common Criteria requirenueigh-
assurance. Xenon currently considers high assurance to approtima®mmon Criteria
EALG6 package, depending on which version [4] of the Common Criteriaised.

1.1 Conditional MSL Information Flow Palicy

Xenon's basic approach to separating user communitiesnsiléiple single levels (MSL)
information flow policy:

e each community is given a separate execution environment and

« information flow between the environments is limited to a restricted form of replica
tion, i.e. when an execution environment wants to read data from anotirexiloit
reads a local replica.

For Xenon, the MSL separation policy is formally modeled as a special kicdrmadi-
tional non-interference policy [5]. A non-interference policy is ddfifie two sets of sub-
jectsHigh andLow: information is not allowed to flow froriligh to Low. Non-interference
policies define the way in which ldigh subject is prevented from interfering with the be-
havior of aLow subject. In terms of the security domain lattice, case 2 has dodaair
asLow anddom; asHigh (dom; may not interfere withiom;), and case 3 has both do-
mainsdom; anddom; in the role ofHigh (neither domain may interfere with the other).
A conditional non-interference policy allows some flows frétigh to Low, via restricted
communication paths.

The Xenon MSL policy begins with a definition of the security domains thatesasv
sources and destinations of information flows. We take security domain r{argesandy)
from some finite set of the nonnegative integBrs- {0,1,...,b— 1}. (Later in the model
we also use singleton sét} for the top-level system domain that is always authorized to
see anything on the system. Then our domain names are takerDftofb}.)

For any pair of security domair{gom;, dom;), one of three policy relationships exists:

1. information may flow in both directions between the domains (we &ay; =
domj);
2. information may flow fromiom; to dom; (we saydom; ~ dom;);

3. information may not flow betweefvmn; anddom; (we say that the security domains
are incomparable).



If we assume least upper and greatest lower bound security domainthithénof course
the classical information flow lattice of Denning [6, 7]. In the Xenon formateiave call
this lattice thesecurity domain lattice It is necessary to talk about the security domain
lattice because some flows allowed by the MSL information flow policy do noy tiee
security domain lattice relationship.

The MSL information flow policy is a two-part policy defined over the secudiby
mains: aseparation policyand asharing policy The separation policy prohibits all in-
formation flows between domains. The sharing policy modifies this to allow onhsflo
between a pair of domains when one of the domains ibthdary controlledomain that
acts as the least upper bound of all the security domains. Restated, timg giwdicy only
allows direct flows to or from the boundary controller domain. All other fisyarohibited.
The sharing policy also restricts the flows allowed from the boundary clbentitself. In-
tuitively, the flows allowed by the boundary controller either replicate infdioma'up” or
downgrade information back to a “lower” security domain.

1.2 TheMSL Separation Policy

There is a large body of mathematical work on confidentiality, information tow,separa-
tion policies. This work had its beginnings in Bell-LaPadula [8] and Denréing][ Goguen
and Meseguer'son-interferencg5] represents an important mathematical refinement that
led to extensive research on information flow policies. The work of Mol unified
many of these various models of information flow security. Shortly after this;gss alge-
bra researchers made significant progress in two areas: expréssireg non-interference
models in a widely understood general purpose notation and clarifying sbthe more
subtle issues related to McLean’s model. Significant examples of this werRascoe
et al’s concepts of lazy and eager abstraction, [10], Roscoe’sfudeterminism in non-
interference policy modeling [11] and Ryan and Schneider’s prodgebi@ generalization
of non-interference [12].

Recent work in security modeling [13] has focused on the safety profdesecurity
[14]. Since this problem is focused on access control policies ratherifiamation flow
policies, there is little application to our Xenon model.

Recent work on MILS separation kernels has produced a new kirmtofll separation
policy model written directly in machine processable ACL2 [15, 16]. Thedi#fgrence in
this formal model is not that it uses a machine processable notation butnhaddés sepa-
ration in terms of memory segments, iiefiltration andexfiltration Defining separation in
terms of memory segments instead of events could be problematic for behaticothd
be made to change without violating segment rules. Examples would be int@gsrcom-
munication primitives such as locks or semaphores, machine instruction résydescall
results, traps, and interrupts. For an informal example, suppose a VMIéinemtation
has a hypercalk that returns an integer value into a segment that the guest requesting the
hypercall can read. A VMM that was not secure might allow a secondtgaecause the
VMM to return 1 = h(x) to the requesting guest some of the time énd h(x) at other
times. Modulating hypercall, instruction, or interrupt results like this wouldunaate any

3



policy regarding the state of memory segments. Further discussion of thésigssutside
the scope of the Xenon work. We did not try to address this in Xenon lagecto extend
the concept of more abstract policy modeling that began with Bell-LaPadula.

1.3 TheMSL Sharing Policy

Usable systems support controlled sharing of information across domatreséotherwise
to be separated. The MSL formulation of this policy breaks the allowablenrEtion
flow into two parts: 1) flow in the direction defined by the security domain lattidesrw
dom; ~ domy; (intuitively from Lowto High), and 2) flow against the direction defined by
the security domain lattice (downgrading).

1.4 The CSP Formalism

The Xenon formal security policy model is written in CSP [17, 18] and is thasethe
work of Roscoe in defining non-interference policies via nondeterminishbh [ Process
algebras like CSP are well-suited to modeling non-interference and otloemiafion flow
security policies because they are trace-based and ultimately informatiosdiawity is
defined over sets of system traces [9]. This subsection presents afoienal review of
CSP as used in the security policy model, to assist the reader in undergtéamelimodel.
Following the proofs will require more knowledge of CSP. The specific Gfiax of
the model follows Roscoe [17]. Unless otherwise specified, the modektedele failures
denotational semantics [17,18].

CSP is a calculus for reasoning about patterns of communication betweenlenultip
threads of computation. Communication is instantaneous; ordinary CSP dbe®del
the duration of events. The communication patterns are defined as setsesfafaevents.
Events are instantaneous but may be compound, in the sense that ingiastevent:.i. j
has three values that are communicated to any process that share®ttiafée direction
of communication is irrelevant, although CSP provides syntactic sugar to reh@mdader
which process is meant to be the sender or receiver. For example, iartdegentiyp!op
the “I” replaces the dot separator “.” iyp.op, indicating a valuep sent on a communi-
cation channel namellyp. The same event writtehyp? op would remind the reader that
the event is being interpreted as a receive, in the process containing it.

The fundamental CSP construction is fh®cess an entity that generates or partici-
pates in events chosen from éfphabet A (recursively defined) sequential procdasthat
generates traces such(@sa, a) is written asP; = a — P;. The set of all possible traces of
a process”; is denotedraces(P;). The traces of proceds, include the empty tracé, as
well as(a), (a,a), and the unbounded trace, a, a, ...). The proces$*» = a — b — P»
generates traces of the forfa,b,a,b...) with a andb events in strict alternation. For
terminating processes there are constant processeSAk€ that do nothing. A sequen-
tial process communicates with its environment whenever it agrees with itoamant
about the next event that can happen. If a process has no poggib&rent with its en-
vironment then it is equivalent to the constant (deadlocked) pro£€ss”. A sequential



process can offer an initial choice of (component) procesggs= ¢ — P3 0d — Pj
has the tracéd, d,d,d, c,d, c,c,d) € traces(P3), in its set of traces. Thexternal choice
operator [J shows that procesg; begins with a choice, made his’s environment, of
either the left hand component— P5 or the right hand componemt — P;. Process
Q1 = a — @1 0b — SKIP can never have more than ohe&vent in its traces and no
a events may follow thé event; if Q;’s environment ever chooséshen it gets no more
chances to choose the left hand component. CSP choice operatore dasteked, just
as addition+ can be indexed to become summatidn An example of indexed external
choice from the formal model is the proceS§HR; in Equation 3 where external choice is
indexed over possible downgrading requests;.

Sequential processes model a single thread; we can a@pplgurrency operator$o
groups of sequential processes to model multi-threaded computatiomsBesan commu-
nication that agree on the next event will share that event. The easiestreency operator
to understand has no sharing at afiterleaving H| which combines its operands to ex-

ecute concurrently without communication. So proc@ss= P; ||| P, can have traces
(a,a,a,b,a,b,a) and(a, b, a, b, a, b). Generally, it is nondeterministic as to which process
is responsible for identical events when they are concurrent butamtwnicated. With-
out communication, the identical event occurs separately in each pr&iess our model
needs determinism at certain points, we avoid interleaving over procestbeslentical
events. Interleaving can be indexed as well; Equation 3 has prétessfined by indexed
interleaving.

For concurrency with communication, our model usesalphabetized parallebper-
ator « H y with interfacesX andY. The interfaces of alphabetized parallel are event sets

that show which events are communicated on the corresponding side artil&elpoper-
ator. Events that are iX U Y are synchronized over the two processes. So if we define
interfacesX =Y = {a}, then proces§)s = P; « H YPQ has the same traces as proc£ss
because botl?; andP, execute theirn events at the same time.

A final bit of CSP used in the model isparameterized processs in parameterized
processP(x). In this process, parameteiis either an event or part of an event that is used
in the definition of proces®(x), e.g9. P(x) = z.i.j — P(x).

2 TheFormal Mode

Our formal model of the Xenon security policy uses a specific notion cdirsgion called
independencél?7] that defines separation betweleow andHigh as the independence of
Lows view from anythingHigh might do.

If S represents the VMM and its guest operating systems as a (composite) @®Bpr
H is the set oHigh CSP events, and is the set ofLow CSP events, then the separation
policy will have the form

Ly(S) = (5x|| (CHAOS ) \ H det (1)



where the equivalence is stable failures equivalence and the nofatien means process
P is deterministic. Following Roscoe [17], a procd3ss deterministic £ det) when

s (a) € traces(P) = (s,{a}) ¢ failures(P) 2

The best explanation of Equation 1's definition can be found in Chapte&f Ebscoe’s
text [17]. This definition “subsumes” thdigh user (guest operating system) with the CSP
constantCHAOS i that not only can perform all possible sequencesligh events, i.e.
sequences a well-behaved user would not generate, but also deardylvefuse to perform
any of them as well.

Intuitively, Equation 1 says that if a malicious guest operating system acfigut
any restraint can cause some non-determinishoinbehavior (i.e. there aren’t any system
or Low events that can restrict that particular behavior) then that malicious gpesdting
system can leak information against the allowable direction of information flow.

The introductory formulation of Equation 1 omits internal details about the 1syste
that is supposed to satisfy the MSL separation policy. These internal detlilsle the
security domains, the guest operating systems, the boundary contnotleheaVMM itself.
We now present a complete model that adds all of these details to the pfdéksbegin
with the individual events and channels used to communicate between sgectd®n we
describe the component processes that define communication pattetrfgisim with a
presentation of the combined system.

2.1 Interfaces

The complete model uses four sets of communication channels between isdeserfhe
first two sets contain channels used for the separation policy

* hyp;,i € D U {b}, that communicate events initiated by the guest corresponding to
security domain and,

* sig;,i € D U{b}, for events initiated by the VMM, for security domain

Figure 1 depicts the use of the remaining two sets of channels, for sha@hgnnels
rl;andrr of therequest channedet are used to communicate requests to share data across
domains, to and from the boundary controller. Changetndsr; of theshare channeset

are used by the boundary controller and VMM to forward authorizedrsfpa

2.2 Eventsand Data Values

Each event hassecurity classhat is the same as the security domain of the highest domain
participating in the event. The VMM process shares every event with st ¢ guest
procesg=; but has no security domain itself. There are three kinds of events:

* separation policy eventsyp,.op, sig;.e € SEP that model the hypercalls and sig-
nals between guest processes and the VMM,
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Gp boundary controller

sl

rr

Vo lvMmMm
Sl’j

rIi

Gi guest Gj guest

Figure 1: Communication Channels Between Process Interfaces

 sharing request events;.x.i.j, rr.x.i.j € RE(Q that request sharing of datafrom
domain; with domainj, and

* sharing policy eventsl.x.i.j, sr;.x.j.i € SHR that transmit shared datato domain
7.

So the setsSEP, REQ, SHR contain the separation, request, and share policy events re-
spectively. These events are used to describe the allowed sequéirtesaation between

the VMM, its guests, and the boundary controller. We also partition theses@tsecurity
domain basis, e.gSEP; is the set of separation policy events for security domain

The valuesr.i.j associated with events in sBIE(Q are taken from two set¥FS and
NO that model the rules used by the boundary controller to restrict sharidgtafacross
security domains. SeYES contains values of the form.i.j wherex is the value to be
passed across a security domain @laad; are the source and destination of the flow, and
the sharing is authorizédThe setVO contains all other possible sharing arrangements that
could be requested, i.e. unauthorized sharing; it is the complemeénEsfwith respect to
model events of the fornma.i.j.

The use of thé and? separators in the model has no semantic significance but merely
serves as a reminder about which process is “sendig (‘receiving” (?) during a syn-
chronized event. When send or receive does not matter, we may us¢ ptdoeplace the
! or 7 separator.

2.3 Guest OS Processes

The guest operating systems are modeled by a finitd Sgt| £ € D} U {G}} of guest
operating system processé€s. Figure 2 shows GSPML diagrams [19, 20] of the guest
process structure. The boundary controller guest operating systaagsG, runs in the

1The setYES contains not only events representing flows in the direction defined by theity lattice but
also flows against that direction, that the users have authorized.



boundary controller security domain, i.e. it is not part of the VMM but in donia A
guest operating system process may also be referred to as a gusstov just a guest.
The guests run interleaved @s= || G;, i € D U {b}. Each guest process;, i # b, is
defined as the interleaving of a separation component and a sharing mentpo

G; = GSEP; ||| GSHR; ©)
where
GSEP; = hyp;lop — GSEP; U sig;7e — GSEP;
and
GSHR; =
O, ievps rileij — GSHR;
U, jeno mhilz-ij — GSHR;

Osri?zx.j.4: YES UNO — GSHR;

Interleaving is used in the definition of the guests to isolate the separatiovidieinam the

G G GSHR
Y (ceen )
icD U{b} GSER

= n x.i.j € YES
i
GSHR ( > rilxi.j

GSHR

~—

L]

GSER

g X.i.j € NO
(;sig?e (; rli!xi. j

GSER GSHR
J—
S ||
yp:op
i 8) sri?X.j.i € YESU NO

GSER

GSHR

Figure 2: GSPML Diagrams of Guest Structures

sharing behavior. The alphabet of procésSEP; is disjoint from the alphabet of process
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GSHR;. The alphabet of a guest procégsis F;. Notice that the guest processgésdo not
have any events in common with each other; that is their alphdhetse pairwise disjoint
and we could have connected them via alphabetized parall(ﬁlgaeai, F;) and have the
same meaning.

Each guest process can choose values fraity U NO to request sharing via the bound-
ary controller. The boundary controller process makes sharing poécisins and for-
wards approved data to the appropriate security domain, through the VMM.

2.4 Boundary Controller

The boundary controller process, models enforcement of the sharing policy. Figure 3
shows a GSPML diagram of the boundary controller sharing. Equatitrowssthe struc-

GSHR,

%ieD

Ei rrx.i.j: YES
slix.i. j

GSHR

1
L

% ieD
C; rr2x.i.j : NO

GSHR,

Figure 3: GSPML Diagram of Boundary Controller Sharing

ture of the boundary controller. The boundary controller is designeatmihrequests in
YESand discard the others.

Gy = GSEPy, ||| GSHR, (4)

where
GSEPy, = hypylop — GSEP, U sigy7e — GSEP,,



V(rq,sq)

i D U{b}
VSEPR

~—

VSHRrq,sq)

-
VSER

(; sigle

VSER
T

CS hyp7op

VSER

L]

8)mhiLYE&WO

VSHR(x)"rq™(2),{y) " sq)

L]

8) rrixi.

VSHRIq, {y)~sq)

(BﬁhiLYE&WO

VSHR(X)"rq, (y) "sq (2))

L]

ieD

]

8) sri?yi.j : YESUNO

VSHR(X)"rq,sq)

Figure 4: GSPML Diagrams of VMM Structures

and
GSHRy, =
L]
[}

€D

€D

The alphabet of the boundary controller is referred td&aand the combined alphabets of
all guests including the boundary controllerfis The boundary controller communicates

rrix.a.j: YES — sllxvi.j — GSHRy O
rr?x.a.j : NO — GSHRy

with the other guests through the VMM.

25 VMM

The VMM processV (rq, sq) defined on alphabdf not only responds to hypercall events
and generates signals, it also connects sharing requests and esspinsommunication
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buffers. Figure 4 shows GSPML diagrams of the VMM process structlihe top-level
structure of the VMM process is

V(rg,sq) = ( ||| VSEP;) || VSHR(rq, sq) (5)
The separation component&SEP; of the VMM are defined as
VSEP; = hyp,;?op — VSEP; O sig;le — VSEP;

for all domainsi in D and the boundary controller domain

Sharing via the VMM process is performed by a single procEs$/R(rq, sq) that
connects sharing requests and responses via communication byffeeguest queue) and
sq (sharing queue). These communication buffers give§é/R(rq, sq) a parameterized
and double recursive structure. Readers familiar with this kind of CSBtaartion may
skip over the next three equations below to Equation 9. In Equation 9 arttirdes base
cases preceding it, the variablesy, and =z represent:.i.j, y.i.k,anc.i.f € YES U NO,
respectively.

The initial base case is the VMM sharing process with no requests to pdsmatata
to share, Equation 6. It can only accept a single value to be queued tquEsstequeueq
or sharing queusq. Notice that use of thel channel does not require an indexed choice
over security domain® because channel only connects to the boundary controll&y,.

VSHR((), () =
Uiep
O si?7z: YES UNO — VSHR((), (z))

rl;?z : YES U NO — VSHR((z),())) (6)

The next base case, Equation 7, is a VMM sharing process with a notyepassibly
singleton request queye) ¢ and no data to share (i.eg = ()). It can accept values to
enqueue or it can forward its single request to the boundary contrdllgice that use of
the sl andrr channels do not require an indexed choice over security donfaibpscause
channelss/ andrr only connect to the boundary controli@,.

VSHR((x)"rq,()) =
(DieD rl;?2 : YES UNO — VSHR({x) " rq"(2),())) -
O rrle — VSHR(rq, ()

Osl?z: YESUNO — VSHR((z) rq,(z))

The final base case is a VMM sharing process with a non-empty, possiglgt®n, sharing
queue(y) " sq. It can forward shared valug to its destination guest, or it can enqueue
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Figure 5: Communication Diagram

further requests or sharing.

VSHR((), (y)" sq) =
(O, rli?z: YESUNO — VSHR((z), (y) " sq)) -
O sl?z : YES UNO — VSHR((), (y) " sq™(z)) O
(O, srily — VSHR((), sq))

A VMM sharing process with both requests and data to share can inteithcitsvguests
over all possible process choices.

VSHR({x)" rq, (y)~ sq) =
(Uieo
O rrle — VSHR(rq, (y) " sq)
Osi?z: YESUNO — VSHR((x) " rg, (y) " sq " (z)) O
(O, srity — VSHR({z)"rq, 5q))

rli?7z: YES UNO — VSHR((z) " rq  (2),(y)" sq))

(9)

2.6 Complete Model

Given the definition o’ (rq, sq) in Equation 5 we can now define the complete model as
the interface parallel combination of the guest and the VMM.

s=v((,0) | G (10)
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Figure 5 shows the communication pattern for the complete model. As an example,
suppose guest proce€§ wants to pass data to guest procesé&’s; it sends a “request”
message, via channelg andrr, to the boundary controlle,, through the VMM process
V(rq, sq). If the boundary controlle€, decides that passing datao security domain 2
is allowed, it sends a “share” message to the destination gtyesthis sharing would be
modeled by the trace

(rly.x.1.2, rr.x.1.2, sl.x.1.2, sro.x.1.2)

At this point it is important to recall that this model is a policy model and not enédr
interface or implementation model. Specific details of hypercalls and signat®tessen-
tial to the MSL separation policy and the sharing policy does not need to imdetils of
how the VMM flows information on behalf of the boundary controller.

3 Rationale

The formal model presented here is consistent and complete with respiaeMSL policy.
We can see that it is consistent and complete because

* the complete model of Equation 10 is deadlock free,

 the model of Equation 10 satisfies the MSL separation policy on the eveSfafin
and

 the complete model of Equation 10 satisfies the MSL sharing policy on thésdmen
SHR.

It is easy to see that, as our model is defined, satisfaction of the MSLasepapolicy
is not possible with respect to the eventsSHR U RE(Q. Since the security class of
each event is the highest domain that shares it, every boundary cantedliet has the
highest classification. Even if the boundary controller only passes vaue allowable
direction, there will beHigh events that influence the future behavior of guest processes
at lower security classes. That is, event?x.j.: from Equation 3 will or will not happen
some time in the future, even though the domain controller's pass of vatemforms to
the security lattice flow. This is intuitively reassuring because it hints at thessay of
dealing with the covert channels present in reliable interdomain sharinggsasibed by
Kang, et al. [21-23]. We can show that there are no flows out ofrggacomaini due
to separation policy eventsp,.op, sig;.e € SEP;, for any security domain. This is the
value of the independence definition: we can show that the other guesislependent of
the separation policy eventP; involving guestG;.

The sharing policy can be verified usingaak function approaclhat models the prop-
agation of facts over events /R U RE(Q. Intuitively, if the policy is enforced, then no
fact will be output by a guest process contrary to the sharing politigs/ad flows.

In the following sections we sketch formal proofs of these three progetlechanical
proofs are left to future work.
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3.1 Deadlock Freedom

The model’s failures equivalence definition of deadlock freedom istaddipom Roscoe
[11] and Schneider [18] as

(tr,X) ¢ failures(S) (11)

Intuitively, after any possible trace- of the model of Equation 10, there must be some
event that the composite processannot refuse.

For our model to be deadlock free, it must be divergence-free. \tig #tis by noticing
that the processes defined in Equations 3, 4, and 5 have guardesioa@nd contain only
operators that do not introduce diversion. The interleaving of thetguesesses||| G
introduces no divergence because the events of the guests are mugjaiht.dBy the same
reasoning, the complete model of Equation 10 combines two divergesegfocesses
using alphabetized parallel, so the complete model is divergence-free.

Given the divergence-free systesrof Equation 10, we can show that it is also deadlock
free. First, we notice that the following conditions hold

A. None of the component processes terminate.

B. The communications of in Equation 10 are static and the communications of the
components are entirely within their corresponding alphabets. There inbigaity
as to which processes patrticipate in any everfi .of

C. The communications & aretriple disjoint[11]. That is, no event requires synchro-
nization by more than two component processes.

D. There is no use of renaming or hiding operators that potentially introtiideen
events.

E. We assume that each componetitisy that is the component itself is deadlock-free.

where component process means any process in either the guestee VMM V.

We argue that the design of Equation 10 is deadlock-free essentiallydeetzere is
no strong conflict{11] between any pair of communicating components; i.e. there are no
pairs of components where each has an ungranted request from tve &bcause the
communication diagram of' is a tree (see Figure 5), proceSscannot have a deadlock
that involves a proper cycle of components,i.e more than two components @\&rong
conflict, there cannot be a cycle that involves only two components.

3.2 Separation

Our proof that the model of Equation 10 satisfies the MSL separation pol&yavents in
SEP; applies a corollary of Roscoe [#Z]ProcessS is deterministic andseparable over
alphabets” and L if and only if the processeSy (S) and £, (S) are both deterministic.

2Corollary 12.1.3
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To be separable, a processmust first be divergence-free and nonterminating, i.e. no
v events. Additionally, proces® must also be equivalent tB = Py ||| Pr, with its
alphabet partitioned inté and L.

Our proof strategy will be to show that the proces®f Equation 10 is deterministic
and separable, by its construction.

Instead of restricting all flows frontigh to Low, we only restrict flows caused by
separation policy eventgyp,.op and sig;.e, for each guesi. Essentially, this rules all
events inSHR U RE() to beLow events, for separation purposes. Let disjoint event sets
H = SEP; = {hyp,.op, sig;.e}, for some security domai) andL = F'\ H be theHigh
andLow events. Then we have thezy abstractiorof S

Ly(S) = (SFH L CHAOS ) \ H (12)
Given the lazy abstraction ¢f we can formulate the separation policy as
L(S) det (13)

That is, the lazy abstraction must be deterministic, as explained in Equation 2.

The separation policy of Equation 12, that is the lazy abstradligfsS), is not neces-
sarily deterministic becaus8HAOS g = STOP i M RUN g is nondeterministic. To show
that our separation policy is satisfied, we apply the corollary by showirtgptioaessS of
Equation 10 is both deterministic asdparable

We can say that processis deterministic by its construction. The guests defined by
Equations 3 and 4 are deterministic because they use constructivdoetaefined on an
external choice over component processes with disjoitials. Since theinitials of the
external choice are disjoint, there is no ambiguity over which componenégsdtas been
chosen. In a similar way, the use of the interleaving operdfowhich has the potential
to introduce nondeterminism, does not because the events of each gudijaint. So
the interleaved combination of guestﬁ G, is deterministic. The VMM proces(rq, sq)
of Equation 5 is deterministic by 1) its use of constructive recursion ovierexl choice
with disjointinitials and 2) disjoint event alphabets that avoid nondeterminism introduced
by interleaving. The alphabetized parallel operator joining the guests and\iM does
not introduce nondeterminism, so the complete model of Equation 10 is determithiatic
is .S det.

The second part of our argument is to show that proéeissseparable over alphabets
H and L. By definition, event alphabe#d and L given at the beginning of this section are
partitioned. We need to show that procéssf Equation 10 is equivalent to a process

S =(VSEP; || GSEP) || (V' || &)

where processels’ andG’ are the remainder aff andV after theH components/SEP;
and GSEP; are factored out. Our argument makes use of two algebraic propertEeSkf

3Intuitively, the recursion does not involve use of the hiding operator. afmore formal discussion, see
Chapters 3 and 9 of Roscoe [17] and also page 106 of Chapter 4.
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The first property is the fact that || @ = P y I L@ if the alphabetsX andY are

disjoint. We refer to this first property atisjoint alphabetized parallel equivalenc&he
second property is the associativity of alphabetized parallel, that is

Q) @ |, R (14)

We begin by partitioning the alphabets imtband L, so that Equation 10 becomes

(P

X”Y XUY“Z XHYUZ YHZ

HULHHUL

Next we apply the commutativity of the interleaving operato&tdo move the selected
componentGSEP; to the left. Applying disjoint alphabetized parallel equivalencé&to
we get

) /
HULHHUL(GSEPZH”LG) (15)

We now apply the associativity of alphabetized parallel. Interpretiras P, GSER as(,
andG’ as R, from the RHS of Equation 14, we define the interfaces from left to right a
HUuL=X HUL=YUZ H=Y ,andL = Z. With this interpretation of processes
and interfaces, associativity applied to Equation 15 gives us

(V

Next we moveVSEP;, the H component o/, to the right, using commutativity of inter-
leaving. Applying disjoint alphabetized parallel equivalenc&tave get

SEP;) G’ (16)

HUL”H HULUH”L

(V' LH . VSEP;) HULH ! GSEP;) . G’ (17)

e
Now we can apply associativity of alphabetized parallel to Equation 17nfne LHS of
Equation 14 we interprét”’ = P, VSER = @, andGSER = R, defining the interfaces
fromlefttorightasl = X, H =Y, HUL =Y UX ,andH = Z. With this interpretation
of processes and interfaces, associativity gives us

(v’

(VSEP; H|| ., GSEPY) G’ (18)

LHHUH LHL

Applying commutativity we can moveVSEP; I ., GSEP;), which plays the role oPy
in our argument, to the left

(VsEP; || GSEP:) || V') G (19)

H"L HUL”L

A final application of associativity of alphabetized parallel, to Equation gplies the LHS
of Equation 14 a$ VSEP; HH Y GSEP;) = P,V' = Q,G' = R. Defining the interfaces
fromlefttorightasdH = X, L=Y,HUL =X UY ,andL = Z gives us

. . /
(vsep; ||, GSEPy) | (V" || &) (20)
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To complete the argument, we apply disjoint alphabetized parallel equiealenc
. ) ! !
(VSEP; || ~GSEP:) || (v || &) (21)

Since we now have factored processnto two interleaved components over disjoint al-
phabets (as ilP = Py |H Py, ), we haveS as separable. Given our previous reasoning
that S by itself is deterministic, we can now apply Roscoe’s corollary to show that the
lazy abstraction of5 is deterministic. Sincey(S) det, our separation policy holds for
Equation 10.

3.3 Sharing

To show that the sharing is secure, we must demonstrate that a shariryggpelntsr;.x.i.5 €
SHR, wherez.i.j € NO, does not appear in any trace of the system. Sharing request events
rl;.z.i.j € REQ, wherez.i.j € NO, do appear inraces(G;) of a guest; guests other than
the boundary controller request all possible forms of sharing. Hoivexeneed to prove
that Equation 10 defines sharing such that only; € YES values are passed from any
guestG; to any other guest;.

Our approach is to use the rank function approach first reported touyesater [24]. The
rank function approach assigns integers to the events and values réysgtocol, with
a rank function, and then shows that only events with positive rank ceur @t a run of
the protocol. In our secure sharing argument, we consider the VMM amliésts to be
principals in a security protocol and apply a rank function. We then shatnathly values
of positive rank are shared. Our argument differs from the usud fanction approach
because non-positive values do appeatriaes(S). Instead of showing that no principal
receives a non-positive value, we show that the essential principajutre, never sends a
non-positive value, even though some non-positive values are submititedltee simple
construction of the guard makes it easy to establish this. Conventionaltggmotocols
are more complex and require the complete approach shown by Schrizdgler |

The rank function approach is well-suited to what we have to show. Atégahing
of this section we pointed out that eventsRi'() U SHR can cause non-determinism, so
secure sharing is not defined according to the independenGg'®fiew of the rest ofS.
Instead, sharing is secure if none of the values that appe&f;srsharing channedr; are
unauthorized, i.e. in the s&tO.

For our proof we use the rank functipnrshown below as Equation 22.

0 ifa=srjxij xije NO
pla)=<0 ifa=slzij zije€ NO (22)
1 otherwise
Our argument does not need to address model compoB&HS; or VSEP; because they
do not contain events of rartk

We begin by noticing that, by definition, values.; € NO do not appear on channgl
That s, the boundary controller process satisfies the proggrtgt no ({sl.z.i.j} C NO);
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all of the values associated with chansleiust be inYES, by the design ot7SHR;, shown
in Equation 4.
GivenGb sat no ({sl.z.i.7} C NO) we can now say that
|| (rq, sq) sat no ({sl.z.i.j} C NO) as well, because the alphabetized parallel

operator constrains what the VMM procésérq, sq) can do. So we are now able to say that
no event of non-positive rank happens because of model compdmelpt” - V(rg, sq).
b

This component does not generate such events on chainaredl it is the only place in the
whole model that they could be generated.
Given the absence of an eveditr.i.j € NO in processF, H - V(rq, sq) we can

now say that sharing queug never contains a value.i.j € NO By its construction,
the VMM process can never generate an eventr.i.j, x.i.j € NO because the VMM
process’ sharing queue never contains the value needed to gensrhtars event. So
model component (rq, sq) sat no ({srj.x.i.j} € NO). Given this, we can say that the
alphabetized parallel combination of the VMM and any guest proGgssso does not have
ansrj;.x.i.j, x.i.j7 € NO eventin any of its traces. That is

Gj . I Vg, sq)satno ({srj.xi.5} € NO). Since this s the only component that could

generate such an event we can say that no event of non-positkv@appens because of
components H (rq, sq). Having ruled out the only two events of non-positive rank,

we can say that the model of Equation 10 maintains positive rank with rept rank
function of Equation 22.

4 Semiformal Correspondence Demonstration

To apply this model to Xenon, we construct a semiformal correspondesroertstration.
This correspondence shows how the model represents Xenon's policg enforcement.
Constructing and applying the correspondence demonstration helps estifyidhterface
and design problems with the VMM that might not be apparent from the s@made alone.
For all but the most casual software security, some form of corresggmeddemonstration
is essential because security is not preserved by refinement [9, 25].

The concept of a correspondence demonstration is based on the comendizgram
principle for verifying data abstraction [26-28f. A commutative diagram captures the
relationship between concrete software and an abstract model. Within thd (ootlee
software), we are interested in the relationships between the entities difirted model
(or the software), captured in the diagram as a mappingetween model (oM for the
software) objects. The model is shown to correspond to the softwarerdgyr@sentation
function A that maps concrete software entities to abstract model entities. Equation 23
shows a commutative diagram for correspondence to the Xenon formal madabstract
model properly corresponds to its target concrete software if the diagmnmutes A

“We recall this for the reader because this knowledge seems to havéolseensome parts of the security
community.
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diagram commutes if and only if, starting at the lower left corner, moving in bivédttions
to the upper right corner gives the same result, wherever the abstrati@iined. For
Equation 23 thisisno A = Ao M.

model model

entities " entities (23)
: A

Xenon M Xenon

entities entities

For security, it is important that the representation functibshould be a total function
that maps all of the entities in the Xenon interface into entities in the formal sepafity
model. Otherwise, a flaw introduced by some unmapped software entity whlencaught
by the policy-to-code modeling. For a similar reason, we prefer not to davé care
conditions in our modeling that would leado A C A o M.

The commutative diagram principle does not have to be applied formally tdibene
software security. Semiformal mappings constructed from natural laygguges and tables
can emulate a formal representation mapping.

Our semiformal correspondence demonstration is based on mapping tba X&fivi
interface to pertinent characteristics of CSP events and processesfofrital model. We
view the hypercalls, additional traps that could happen, interrupts,ichdiVinstructions,
and high-level language statements attempted by each guest as “Xemdsi.eVée show
correspondence by mapping these “Xenon events” to CSP events it foodel.

The Xenon interface has entities besides events and we will show howdtiesesn-
tities map to the formal model, after we understand the basic map. Our canckspme
demonstration should be considered as a separate model, being neittwntaksecurity
policy model nor the abstract VMM described by the semiformal specificafitmee VMM
interface.

4.1 Basic Mapping

The basic semiformal correspondence demonstration maps each “Xeeoti #to an
event in the formal model. Xenon events include hypercalls, interruptss,tranprivi-
leged instructions, and privileged instructions. Privileged instructiorisdiecnot only the
instructions that cause a guest OS execution to exit to the VMM but also tbalimachine
control instructions like VMX and VME Unprivileged instructions are also mapped. The
basic map is given as Table 1.

Although the basic map given in Table 1 is sufficient to show that the formiatypo
model corresponds to the VMM interface, it may not be clear how this map isply &

SXenon is currently targeted at 64-bit x86 architectures only.
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Xenon VMM Interface Formal Policy Model
guest OS G;

domain G;

hypercall hyp;.op

unprivileged instruction hyp;.op

privileged instruction hyp;.op

trap hyp;.op

interrupt sig;.e

received event channel messageig;.e

Table 1: Basic Xenon Interface to Formal Policy Model Map

all details of the VMM interface. Some further interpretation is necessary.

4.2 Externally Visible Data

The VMM interface provides data structures that are visible outside the Viidse data
structures include virtual memory, virtual machine control structuresicdedriver front

ends, and structures like event channels that are presented ad gaatXen interface.
In principle, all effects of these data structures can be mapped on tleedfasads and
writes to the applicable memory, i.e. as “Xenon events”. Each read or writgdb-level

language operation on data) can be viewed as one or more “Xenon'avatinap directly
to a CSP event. The particular events that happen define the state ofieeelfdata. In
some cases, this direct application of “Xenon events” will be the simplestovpgrform

the mapping of data to CSP model events.

In practice this direct application can be too complex. In those situationspresent
data in the Xenon interface by CSP processes. Using processes to agatalstructures
is a conventional CSP technique. Techniques for modeling shared dptacesses are
well-defined and widely understood by the CSP community [17, 18].

To apply this technique, we first model memory, devices, and data stradtutée
Xenon interface specification as CSP processes. We define onegfoceach instance of
a data structure. With the data transformed into CSP processes, we cangheéhe CSP
events associated with those processes into the CSP events of the forreal Gmdplexity
is reduced because we can interchangeably refer to the interfacedatares as though
they were processes or as the actual data structures.

Each of these “memory” processes defined by the Xenon interfacereseagied using
well-established CSP practice via “set” and “get” events that model readidgvriting of
the corresponding data structure. Race conditions and similar issuestleegeeas trace-
level characteristics of these processes, since CSP offers no builiargees against race
conditions or similar issues. Modeling externally visible data as CSP pracdsss not
magically hide any of the potential difficulties that can arise with the real daiatstes
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they represent.

So it is possible to simplify the mapping to the formal model by thinking about each
data structure by its name, but treating the data structure as though it wesees@ The
fact that some CSP “processes” in this conceptual VMM interface aee steuctures is
irrelevant to the separation policy.

4.3 Request-Response and Transients

The semiformal correspondence demonstration introduces additionegutsrthat do not
appear in the formal model. The correspondence demonstration is amefihef the
formal model, though the refinement is no longer mathematically well-defined.fifidt

refinement is that request and response (send and receagho longer map from the
Xenon interface as a single event. It is desirable to retain the single-@metentation in
the correspondence demonstration, as much as possible. Requessaorise will have to
be separated in those cases where mapping from a single Xenon inteviEatedoes not
preserve the CSP properties critical to the MSL information flow policy.

The actual VMM interface behavior will also include transient events sisclocking
and non-atomic changes to memory. In the formal model, transients could beladad
CSP by using hidden events. Doing this would significantly increase the complexity of
the formal model and introduce non-determinism as a general propetitg security pol-
icy. If the formal model were non-deterministic by its construction, then wedcnot use
determinism as the fundamental definition of security. So the formal modelasiaistic,
without transient events. The correspondence demonstration int®ttacsient events as
semiformal concepts. The correspondence demonstration then hasmdhstidhe tran-
sient events in the Xenon interface satisfy the essential properties oGS necessary
for MSL information flow policy enforcement, i.e. they cannot be used toatiffom one
domain to another.

4.4 Nondeterministic Interrupts

The formal model does not address the nondeterminism of interruptsitsetreat come
from the environment rather than from the VMM or one of the guests. Imtbéel, inter-
rupts are represented by signal events arising deterministically within the M&BP can
model nondeterministic interrupts accurately, via a special interrupt tpefa The sig-
nificant issue here is that the accurate CSP interrupt opefatntroduces nondeterminism
to the security policy, while the model’s definition of security requires determirdsall
events. (Accurate modeling would also significantly increase the complexibeahodel
and distract us from security policy concepts.)

In the Xenon interface, interrupts will come from outside the system, in aetendin-
istic way. The issue then becomes one of showing that untrusted guestst canse or
prevent interrupts from the environment to another guest. This will justdyntiapping of
nondeterministic Xenon interrupts into the deterministic signal events of the fpwtiay
model.

21



45 Subjectsand Objects

The model’s separation policy given by Equation 12 defines securitytasiaism in the
lazy abstractionCy(S). Our correspondence demonstration may need to map the more
familiar subjects and objects into this definition, to satisfy some Common Critericgequ
ments. Xenon domains in the interface are security policy subjects and Xesources
(e.g. memory or devices) in the Xenon interface are security policy obj&csur map-
ping can show how Xenon subjects and objects fit into the formal policy model.

In the correspondence demonstration, Xenon domains then becomemesises of
the model, as shown in Equations 3 and 4. The data structures that implemsaitdaon
Xenon will have correspondence processes for their memory, devi¢ds-defined struc-
tures, and Xenon-defined abstractions associated with a Xenon donexion’X domain0
is part of the VMM, in the correspondence demonstration. That is, domsin® subject
to the restrictions of either the separation policy or the sharing policy.

4.6 Least Privilege

Levin, Irvine, and Nguyen have publishedeast privilege separation modg9] for static
separation kernels. This model defines fine-grained access covérohdividual resources
exported to a domain. It also envisions fine-grained exportation of dsbjbat is, the least
privilege model defines more than one subject per domain (using Xermomt#ogy). The
least privilege model is a very practical model that exemplifies the inevitatdewining
of formal modeling and ultimate implementation. Least privilege separation ariésipa
underlying hardware with segment registers. Segment registers azd@ujpr enforcing
separation via hardware, for two reasons: 1) segment registerasilg associated with
specific hardware processes, and 2) detailed security attributes, ixgeanlamber of bits
per process, can be amortized over many bytes of memory. Implementing prigdsge
policy with page-based memory management would be awkward and ingfficien

Xenon will be implemented on 64-bit x86 hardware. This hardware disab&seg-
ment registers, so it will not be possible for Xenon or any other VMM tomer# a least
privilege model on 64-bit x86 hardware; at least not with any kind gliable simplicity.
On the other hand, Xenon’s multiple single levels (MSL) policy provides fdifi@rent
kind of least privilege, because it limits the interactions between guests tgla sétiable
upward replication. We can also limit the privileges of the boundary contr6ljeby di-
viding it into a family of single-interaction (i.e. one direction between one paseciirity
domains) boundary controllefs;; that control sharing from security domairo j. While
this would have no impact on the formal proof of secifrityie model would become clut-
tered, since this would require(n — 1) boundary controller processes in the model. In
practice, we only need single-interaction boundary controllers wherddfired security
policy calls for interaction.

5We can use the VMM proceds as the root of the necessary tree-structured communication diagram.
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4.7 Using the Mode and Correspondence Demonstration

With these interpretations of the basic mapping established, we can now thstagpara-
tion policy of Equation 12 in the following semiformal manner.

If the history of the VMM and all its domains determine that a Xenon event
of a guest in a low domain is possible (or impossible) then a guest in a high
domain cannot cause the same Xenon event to be impossible (resp., possible

Recalling that reads or writes to Xenon domains will be “Xenon events” ofdnespond-
ing processes, we see that a key implication of this policy is that no domaiidsh@able
to read from or write to parts of any other domain.

This key implication is not the whole application of this model. Each interrupt, trap,
hypercall, and instruction is a distinct semiformal concept that must be tedidgainst the
mapping. A high domain should not be able to modulate the possibility or impossibility of
any “Xenon event” in a low domain, if separation applies.

5 Summary

The Xenon formal security policy model combines both separation anthgtiaformation
flow policies in one model. Previous formal security policy models only adéiksepara-
tion; sharing has been either left out or assigned to trusted subjectsd¢haitanodeled.
The composability of CSP and its general suitability for modeling event-baged n
interference policies makes it possible to construct a combined model aatigaly sim-
ple one. The structure of the policy model is intuitively close to the structuesmafple-
mentation, though it imposes no structure on any valid implementation. We hawa sho
how easy and natural it is to construct a semiformal mapping from the marples world
of the Xenon interface to our model.
Our future plans for the model include 1) using it to design Xenon and itoacting
mechanical proofs either directly using a CSP-based tool like FDR or byeeédngy CSP
into another formalism like ACL2.
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